If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-56=0
a = 2; b = 5; c = -56;
Δ = b2-4ac
Δ = 52-4·2·(-56)
Δ = 473
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{473}}{2*2}=\frac{-5-\sqrt{473}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{473}}{2*2}=\frac{-5+\sqrt{473}}{4} $
| -5p+4=24 | | 34-4x=6 | | 20=x1 | | 80+14x+2=360 | | 6x+8+3x19=90 | | 3x+9+3x-14=103 | | 80+14x+3=180 | | 7.6x=2.4 | | 6+4x=-5x-15 | | c+5=3c-4 | | 3x+12+7x-2=90 | | 3(2x+10=9 | | y=1/2(0^3)-2(0)+1 | | 3x/8=20 | | 32=g+17 | | 16900=x^2 | | -(1+7x)-6(-7+-x)=36 | | 4(5x+5)=2x | | 11=20x=-569 | | -7x+6=19/2 | | 24=13+r | | G(2)=8•4x | | y=1/20^3-2(0)+1 | | 3x2^x/5=24 | | 40x-20(39)=40x(33x) | | (x+1)2=(x-1)(x-1+5) | | 39x2-14600x+730000=0 | | 5(-3r+6)=-26-7r | | 3(x+1)=12+4(x–1) | | -(1+7x-6(-7-x=36 | | 144=6y | | h-35=19 |